Понятие логического закона
Закон мышления - это необходимая, существенная, устойчивая связь между мыслями. Наиболее простые и необходимые связи между мыслями выражаются формально-логическими законами тождества, непротиворечия, исключенного третьего, достаточного основания. Эти законы в логике играют особо важную роль, являются наиболее общими, лежат в основе различных логических операций с понятиями, суждениями и используются в ходе умозаключений и доказательств. Первые три закона были выявлены и сформулированы Аристотелем. Закон достаточного основания сформулирован Лейбницем. Законы логики являются отражением в сознании человека определенных отношений между предметами объективного мира.
Формально-логические законы не могут быть отменены или заменены другими. Они имеют обще человеческий характер: они едины для всех люде различных рас, наций, классов, профессий. Эти законы сложились в результате много вековой практики человеческого познания при отражении таких обычных свойств вещей, как их устойчивость, определенность, несовместимость в одном и том же предмете одновременного наличия и отсутствия одних и тех же признаков. Законы логики – это законы правильного мышления, а не законы самих вещей или явлений мира.
Кроме этих четырех формально-логических законов, отражающих важные свойства правильного мышления, - определенность, непротиворечивость, четкость мышления выбор «или – или» в определенных «жестких» ситуациях, - существует много других формально-логических законов которым должно подчиняться правильное мышление в процессе оперирования правильными отдельными формами мышления (понятиями, суждениями, умозаключениями).
Законы логики функционируют в мышлении в качестве принципов правильного рассуждения в ходе доказательства истинных суждений и теорий и опровержения не правильных теорий.
В математической логики несколько иной подход. Там законы, выраженные в виде формул, вступают как тождественно-истинные высказывания. Это означает, что формулы, в которых выражены логические законы, истинны при любых значениях их переменных. Среди тождественно-истинных формул особо выделяются такие, которые содержат одну переменную.